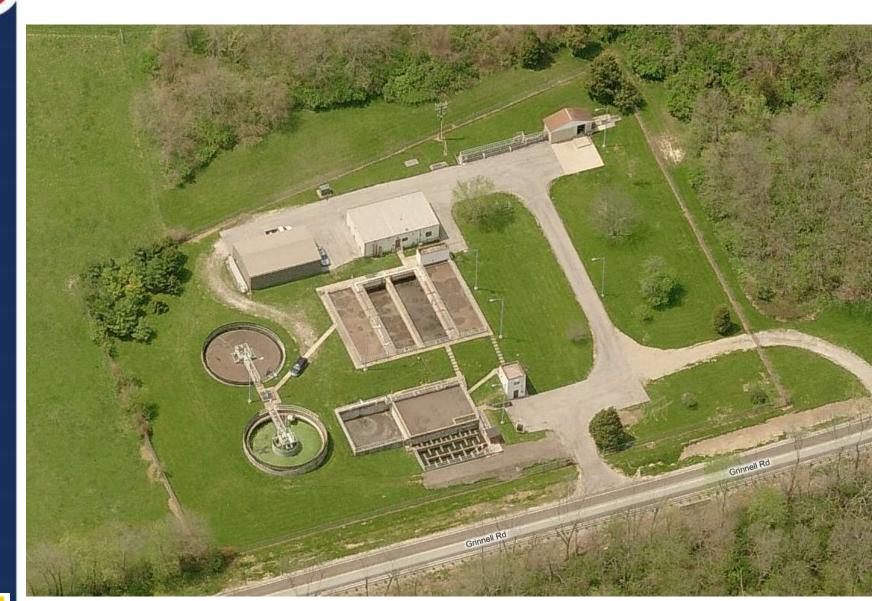


Innovative Facility and Infrastructure Design™

WATER RECLAMATION FACILITY The Most **Colorful** Experience in Wastewater

1964 ORIGINAL PLANT CONSTRUCTED

- > Headworks
 - Separate from rest of plant
- > Aeration Basins
 - Outdoor blowers
- > Rectangular Clarifiers
- > Chlorination


1988 MAJOR UPGRADES

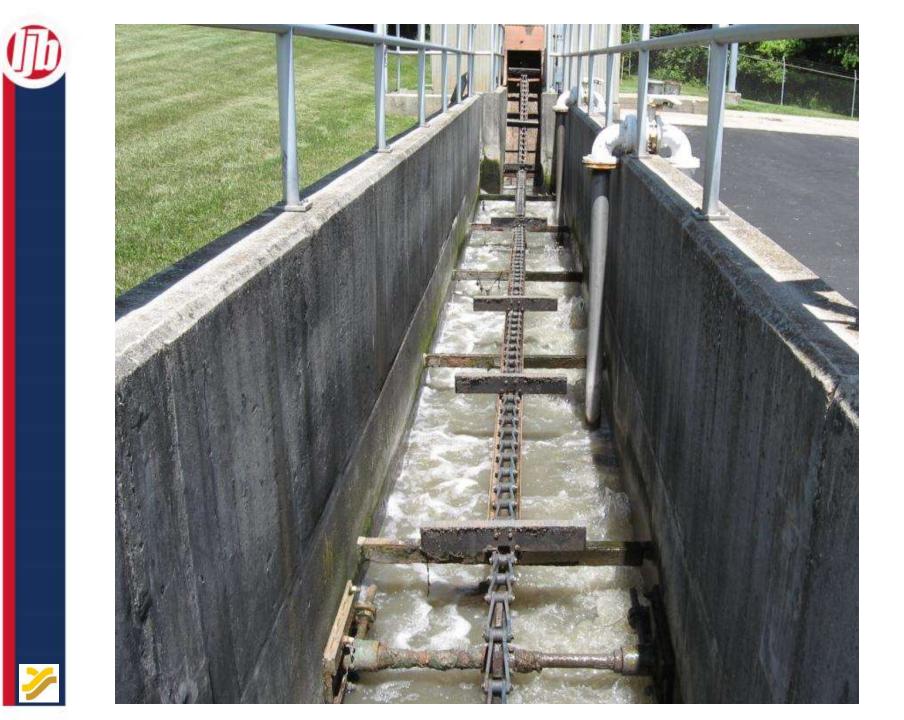
- > Headworks
 - New screen, aerated grit and Parshall Flume at WWTP
- > Administration Building
 - Indoor blowers
 - New electrical and controls
- > Circular Clarifiers
- > Upgraded Chlorination
- > Aerobic Sludge Digesters from Old Clarifiers

LATER IMPROVEMENTS

- > Maintenance garage
- > Shed for screen and grit collection
- > Internal bypass
 - Around aeration and clarifiers
 - Final chlorination retained

JOE BATES STARTED 2006

- RECENT IMPROVEMENTS
 - > Non-functional waste sludge pump replaced
 - > Effluent V-Notch flow meter added
 - > Improved dechlorination
 - > Automatic samplers
 - > Visual Enhancements



HEADWORKS

- > Screen
 - Old, high maintenance, poor capture
- > Aerated Grit
 - Low efficiency
- > Make-Shift Building
 - Uninsulated
- > Parshall flume
 - Inaccurate due to poor hydraulic design

AERATION SYSTEM

- > No Flexibility
 - Four tanks
 - Parallel operation only
- > Only Tanks 1 & 4 On Line
 - Tanks 2 & 3 used for sludge storage

يرد

OLARIFIERS

> Single Return Sludge Suction Line

- Unequal flows
- Difficult to have both on line
- > Aging Equipment
 - Rake frame bent
 - Gear box needed rebuilding
- > Debris Problems
 - Center well blockages
 - Cause: Poor screening

ISINFECTION

- > Leaking Feed Line
- > No Flow Proportioning
- > Improvised Dechlorination

JL

IIGH FLOW PROBLEMS

- > Permit Violations
 - MLSS Washout
 - Lingering High Ammonia
- > Strategies for Coping
 - One Clarifier used for Storm Storage
 - Aeration Tank for Holding Solids
 - Internal Bypass Used

SLUDGE MANAGEMENT

- > Insufficient Liquid Storage
- > Disposal by Liquid Hauling Before 2006
- > 2006 Synagro Contract for Dewatering and Land Application
- > No On-Site Storage for Dewatered Sludge

- BACK-UP POWER
 - > NONE!
 - > Hurricane Ike of September 14, 2008
- CONTROL SYSTEM
 - > Completely Manual
 - > No Remote Alarms

WWTP Improvements Project

PROJECT DRIVERS

- > Common Permit Violations
 - Ammonia-nitrogen (most common)
 - Also BOD₅ and TSS
- > Phosphorus Limits in New Permit
- > Operational Challenges
- > Old Equipment

WWTP Improvements Project

ORITICAL PROJECT CHALLENGES

- > High Infiltration/Inflow
- > Common Clarifier Return Sludge Suction Line
- > Phosphorus Limits
- > Low Operational Flexibility
- > Old Equipment
- > Sludge Management


INFILTRATION & INFLOW

- > I/I Reduction Impractical in Project Time Line
- > Objectives:
 - Keep biological solids in the system
 - Maintain treatment, especially nitrification
 - Increase response flexibility

INFILTRATION & INFLOW

- > Solution Components:
 - Provided separate return sludge lines for each clarifier
 - Allows regular use of both clarifiers
 - Undertaken as early project

IIGH INFILTRATION & INFLOW

- > Solution Components:
 - Provided separate return sludge lines for each clarifier
 - Allowed regular use of both clarifiers
 - Undertaken as early project
 - Increased clarifier efficiency
 - Add current density baffles

IIGH INFILTRATION & INFLOW

- > Solution Components:
 - Provided separate return sludge lines for each clarifier
 - Increased clarifier efficiency
 - Added "storm flow mode" capability
 - Electrically operated gates change where raw influent is added to the biological system
 - Allows for MLSS storage in first stage tanks
 - Is progressive as flows increase

IIGH INFILTRATION & INFLOW

- > Solution Components:
 - Provided separate return sludge lines for each clarifier
 - Increased clarifier efficiency
 - Added "storm flow mode"
 - Added diversion box and 2.4 MG overflow basin

MEETING PHOSPHORUS LIMITS

- > Solution Components:
 - Biological nutrient removal
 - Added anaerobic selector chambers
 - » Three chambers of increasing detention time
 - » Covered and Mixed
 - Enhanced denitrification
 - » Mixed anoxic tank
 - » Recirculation propeller pump

MEETING PHOSPHORUS LIMITS

- > Solution Components:
 - Biological nutrient removal
 - Sidestream phosphorus treatment system
 - Chemical treatment of high-P waste streams
 - » Digester decant
 - » Dewatering filtrate
 - » Sludge pad runoff

INCREASING OPERATIONAL FLEXIBILITY

- > Solution Components:
 - Multiple Aeration Compartments
 - Allows combined series and parallel flow
 - Allows tanks to be taken off line
 - Multiple Points of Wastewater Entry
 - Allows for "Storm Mode" to hold mixed liquor
 - Reduces solids loading to clarifiers at high flows

INCREASING OPERATIONAL FLEXIBILITY

- > Solution Components:
 - Multiple Aeration Compartments
 - Multiple Points of Wastewater Entry
 - Added VFDs to Blowers
 - Controlled by DO meter in Tank 4
 - Energy consumption reduced

IMPROVED SLUDGE MANAGEMENT

- > Solution Components:
 - Covered Storage for Dewatered Sludge
 - Allows dewatering when needed, not when fields can take sludge
 - Additional stabilization time

IMPROVING SLUDGE MANAGEMENT

- > Solution Components:
 - Covered Storage for Dewatered Sludge
 - Improved Decanting Ability
 - Removed divider wall
 - Improved thickening
 - Decant to phosphorus treatment system

IMPROVING SLUDGE MANAGEMENT

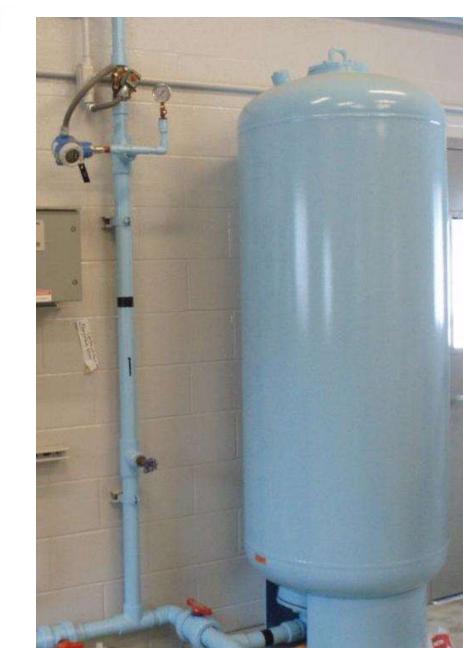
- > Solution Components:
 - Covered Storage for Dewatered Sludge
 - Improved Decanting Ability
 - Capacity for Sequencing Facultative Digestion
 - ORP and pH probes added to each tank
 - Sequencing by controlling aeration

NEW & REPLACED EQUIPMENT

> Replaced Influent Screen

- Old screen "died" in June 2010
- Used manual bar screen as interim measure
- New screen on line in August 2010
- 1/4" bar spacing
- Front cleaning rakes no carry through
- Tilts for maintenance

- > Replaced Influent Screen
- > Replaced Aerated Grit System
 - Vortex grit system
 - Grit pump
 - Grit washing

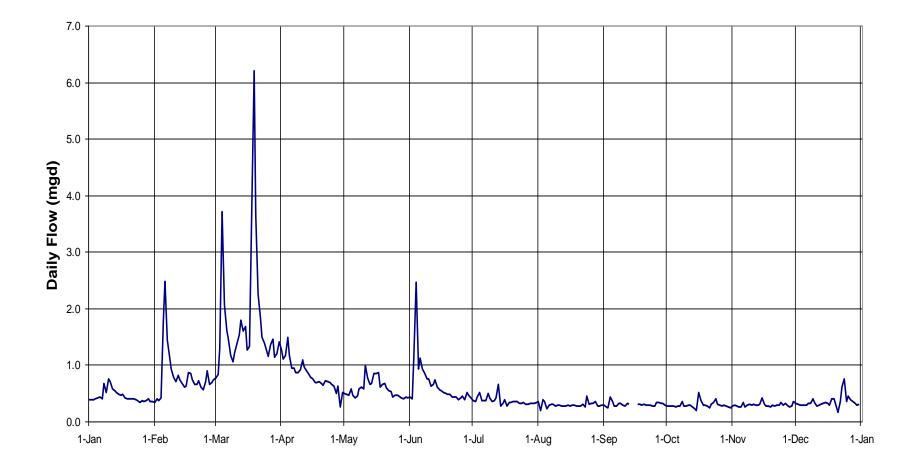


- > Replaced Aerated Grit System
- > Replaced Influent Screen
- > Replaced Parshall Flume
- > Non-Potable Water System
 - For grit system, sludge pressing, bisulfite feed, general wash down, etc.
 - Well pump with flow shield in chlorine contact tank
 - Hydropneumatic tank and pressure switch in screen building
 - VFD Controlled
 - High capacity yard hydrants

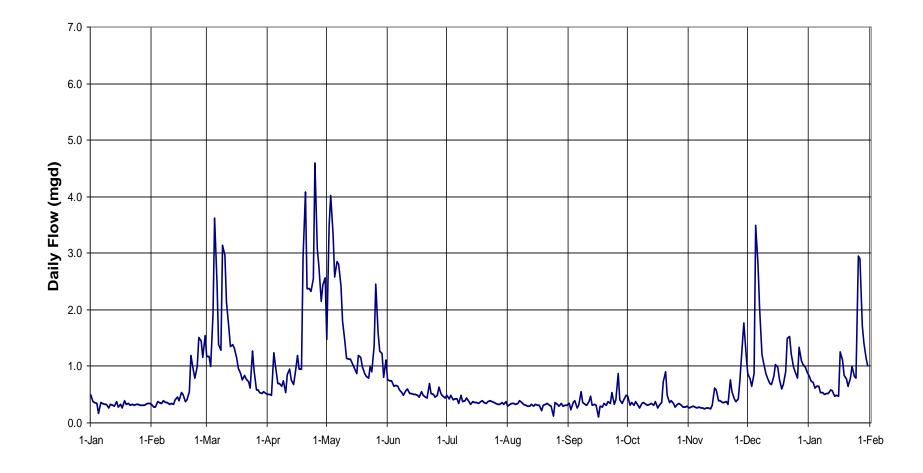
J

- > Replaced Influent Screen
- > Replaced Aerated Grit System
- > Replaced Parshall Flume
- > Non-Potable Water System
- > Emergency Generator and Automatic Transfer Switch

- > Replaced Influent Screen
- > Replaced Aerated Grit System
- > Replaced Parshall Flume
- > Non-Potable Water System
- > Emergency Generator and Automatic Transfer Switch
- > Electrical Systems and Switch Gear



- > Replaced Influent Screen
- > Replaced Aerated Grit System
- > Replaced Parshall Flume
- > Non-Potable Water System
- > Emergency Generator and Automatic Transfer Switch
- > Electrical Systems and Switch Gear
- > Operational Controls and SCADA



Yellow Springs WWTP Flows - 2008

Yellow Springs WWTP Flows - 2011 & Jan 2012

Parameter	Weekly Limit	Monthly Limit	2008 Annual Average	2011 Annual Average
BOD5 (mg/l)	15	10	4.7	3.4
BOD5 (kg/d)	34.1	22.8	16.8	11.7
TSS (mg/)	18	12	6.0	3.5
TSS (kg/d)	40.9	27.3	19.3	16.7

Parameter	Weekly Limit (Winter / Summer)	Monthly Limit (Winter / Summer)	2008 Annual Average	2011 Annual Average
NH4-N (mg/l)	2.9 / 1.1	1.9 / 0.7	0.4	0.09
NH4-N (kg/d)	6.59 / 2.5	4.32 / 1.5	2.0	0.34
Total P (mg/)	na / 1.5	na / 1.0	1.86	1.59
Total P (mg/)	na / 3.41	na / 2.28	2.7	2.45

F

PERFORMANCE EVALUATION

OVERALL ASSESSMENT

- > High Flow Management Was Very Good
 - 2011 high flows were comparable to 2008
 - Overflow basin used several times
 - Diversion box set to allow 3.4 mgd through plant
 - No loss of solids in 2011

F D

PERFORMANCE EVALUATION

OVERALL ASSESSMENT

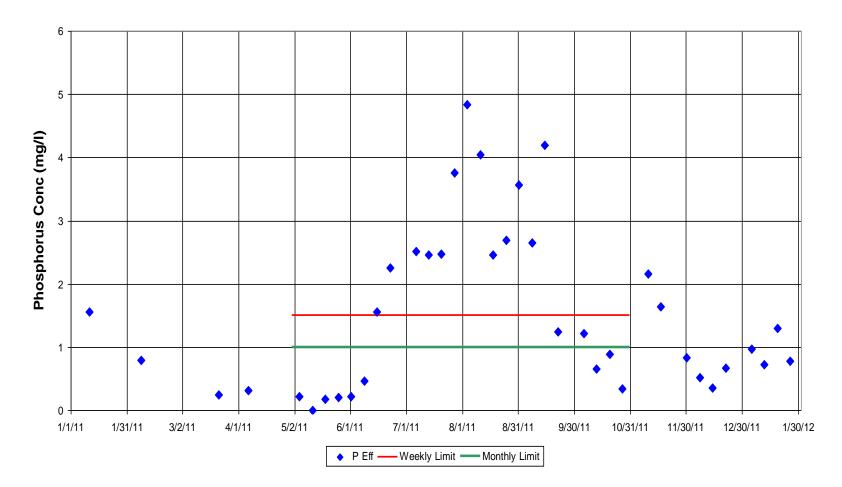
- > High Flow Management Was Very Good
- > Effluent Quality Results Were Mixed
 - BOD5, TSS and NH4-N stayed within limits for both concentration and loading
 - Effluent was extremely clear consistently
 - Phosphorus removal did not meet expectations

PHOSPHORUS REMOVAL

TROUBLE SHOOTING

- > Discovered malfunctioning mixer in anaerobic selector tank
 - One mixer malfunctioned
 - Wiring for two mixer were reversed
 - Mixer improperly wired which delayed discovery of mixer malfunction
 - Easily fixed once discovered
 - Therefore selector tank couldn't work properly

PHOSPHORUS REMOVAL



TROUBLE SHOOTING

- > Discovered malfunctioning mixer in anaerobic selector tank
- > MLSS was too high
 - Land application of sludge had been limited by very wet spring
 - MLSS levels still high from previous operating practices
 - Increase wastage now possible with new sludge storage
 - Therefore MLSS levels were reduced

Yellow Springs WWTP - 2011 & Jan 2012

PHOSPHORUS REMOVAL

TROUBLE SHOOTING

- > Discovered malfunctioning mixer in anaerobic selector tank
- > MLSS was too high
- > Measures appear successful
 - Biological phosphorus removal improved markedly
 - Good removal October 2011 January 2012
 - Looking forward to good year in 2012

